Extensions 1→N→G→Q→1 with N=C23xC4 and Q=C2

Direct product G=NxQ with N=C23xC4 and Q=C2
dρLabelID
C24xC464C2^4xC464,260

Semidirect products G=N:Q with N=C23xC4 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C23xC4):1C2 = C23.23D4φ: C2/C1C2 ⊆ Aut C23xC432(C2^3xC4):1C264,67
(C23xC4):2C2 = C22xC22:C4φ: C2/C1C2 ⊆ Aut C23xC432(C2^3xC4):2C264,193
(C23xC4):3C2 = C2xC4xD4φ: C2/C1C2 ⊆ Aut C23xC432(C2^3xC4):3C264,196
(C23xC4):4C2 = C2xC22.D4φ: C2/C1C2 ⊆ Aut C23xC432(C2^3xC4):4C264,205
(C23xC4):5C2 = C2xC4:D4φ: C2/C1C2 ⊆ Aut C23xC432(C2^3xC4):5C264,203
(C23xC4):6C2 = C22.19C24φ: C2/C1C2 ⊆ Aut C23xC416(C2^3xC4):6C264,206
(C23xC4):7C2 = D4xC23φ: C2/C1C2 ⊆ Aut C23xC432(C2^3xC4):7C264,261
(C23xC4):8C2 = C22xC4oD4φ: C2/C1C2 ⊆ Aut C23xC432(C2^3xC4):8C264,263

Non-split extensions G=N.Q with N=C23xC4 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C23xC4).1C2 = C2xC2.C42φ: C2/C1C2 ⊆ Aut C23xC464(C2^3xC4).1C264,56
(C23xC4).2C2 = C4xC22:C4φ: C2/C1C2 ⊆ Aut C23xC432(C2^3xC4).2C264,58
(C23xC4).3C2 = C23.34D4φ: C2/C1C2 ⊆ Aut C23xC432(C2^3xC4).3C264,62
(C23xC4).4C2 = C23.8Q8φ: C2/C1C2 ⊆ Aut C23xC432(C2^3xC4).4C264,66
(C23xC4).5C2 = C2xC22:C8φ: C2/C1C2 ⊆ Aut C23xC432(C2^3xC4).5C264,87
(C23xC4).6C2 = C23.7Q8φ: C2/C1C2 ⊆ Aut C23xC432(C2^3xC4).6C264,61
(C23xC4).7C2 = C24.4C4φ: C2/C1C2 ⊆ Aut C23xC416(C2^3xC4).7C264,88
(C23xC4).8C2 = C22xC4:C4φ: C2/C1C2 ⊆ Aut C23xC464(C2^3xC4).8C264,194
(C23xC4).9C2 = C2xC42:C2φ: C2/C1C2 ⊆ Aut C23xC432(C2^3xC4).9C264,195
(C23xC4).10C2 = C2xC22:Q8φ: C2/C1C2 ⊆ Aut C23xC432(C2^3xC4).10C264,204
(C23xC4).11C2 = C22xM4(2)φ: C2/C1C2 ⊆ Aut C23xC432(C2^3xC4).11C264,247
(C23xC4).12C2 = Q8xC23φ: C2/C1C2 ⊆ Aut C23xC464(C2^3xC4).12C264,262

׿
x
:
Z
F
o
wr
Q
<